Effects of caffeine on intracranial pressure and pain perception in freely moving rats

Author:

Israelsen Ida Marchen Egerod1ORCID,Westgate Connar Stanley James1ORCID,Kamp‐Jensen Christina1ORCID,Jensen Rigmor H.1ORCID,Eftekhari Sajedeh1ORCID

Affiliation:

1. Department of Neurology, Danish Headache Center, Glostrup Research Institute, Rigshospitalet‐Glostrup University of Copenhagen Glostrup Denmark

Abstract

AbstractObjectiveCaffeine, a non‐selective adenosine receptor (AR) antagonist, is the most consumed psychostimulant in the world. Caffeine has been suggested to regulate cerebrospinal fluid secretion and is known both to alleviate and to trigger headache; however, its effect on the regulation of intracranial pressure (ICP) is not known. Therefore, we aimed to investigate the effects of caffeine on ICP and nociceptive responses.MethodsFemale Sprague–Dawley rats were implanted with a novel telemetric device for continuous ICP recordings, which allowed for continuous recordings in freely moving rats. A single dose of caffeine (30 or 120 mg/kg intraperitoneally) was given. In a second group (non‐implanted), the acute effects of 30 mg/kg caffeine on periorbital threshold using Von Frey testing and spontaneous behavior were utilized using an automated behavioral registration platform (Laboratory, Animal, Behavior, Observation, Registration and Analysis System) in a randomized cross‐over study. Quantitative polymerase chain reaction and immunofluorescence were used to localize ARs in the choroid plexus.ResultsA single dose of 30 mg/kg caffeine lowered the ICP by 35% at 165 min after administration (saline: 0.16 ± 0.9 vs caffeine: −1.18 ± 0.9 ΔmmHg, p = 0.0098) and lasted up to 12 h. Administration of 120 mg/kg caffeine showed a faster onset of decrease in ICP within 15 min by 50% (p = 0.0018) and lasted up to 12 h. The periorbital pain thresholds were higher after 1 h (saline: 224.6 ± 15.1 vs caffeine: 289.5 ± 8.7 g, p = 0.005) and lasted up to 5 h. Caffeine‐treated rats had increased locomotor activity, speed, and changed grooming behavior. Expression of AR1 was found in the choroid plexus.ConclusionsThis study demonstrates that caffeine has a lowering effect on ICP as an acute treatment. Interestingly, caffeine acutely caused an increased response in cephalic thresholds supporting hypoalgesic effects. Future studies investigating the beneficial effects of caffeine for elevated ICP are warranted.

Funder

A.P. Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal

International Headache Society

Lundbeckfonden

Publisher

Wiley

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3