Maximum Likelihood Estimation of Multivariate Regime Switching Student‐t Copula Models

Author:

Cortese Federico P.1ORCID,Pennoni Fulvia2ORCID,Bartolucci Francesco3ORCID

Affiliation:

1. Department of Economics, Management and Statistics University of Milano‐Bicocca Via Bicocca degli Arcimboldi, 8 Milan 20128 Italy

2. Department of Statistics and Quantitative Methods University of Milano‐Bicocca Via Bicocca degli Arcimboldi, 8 Milan 20128 Italy

3. Department of Economics University of Perugia Via A. Pascoli, 20 Perugia 60123 Italy

Abstract

SummaryWe propose a multivariate regime switching model based on a Student‐ copula function with parameters controlling the strength of correlation between variables and that are governed by a latent Markov process. To estimate model parameters by maximum likelihood, we consider a two‐step procedure carried out through the Expectation–Maximisation algorithm. To address the main computational burden related to the estimation of the matrix of dependence parameters and the number of degrees of freedom of the Student‐ copula, we show a novel use of the Lagrange multipliers, which simplifies the estimation process. The simulation study shows that the estimators have good finite sample properties and the estimation procedure is computationally efficient. An application concerning log‐returns of five cryptocurrencies shows that the model permits identifying bull and bear market periods based on the intensity of the correlations between crypto assets.

Publisher

Wiley

Reference74 articles.

1. International Asset Allocation With Regime Shifts

2. Asymmetric correlations of equity portfolios

3. Regime Changes and Financial Markets

4. Ardenas‐Ovando R. Noguez J.&Rangel‐Escareno C.2017.RcppHMM:Rcpp Hidden Markov Model. R package version 1.2.2.

5. Regime changes in Bitcoin GARCH volatility dynamics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3