Flexible Multivariate Mixture Models: A Comprehensive Approach for Modeling Mixtures of Non‐Identical Distributions

Author:

Pal Samyajoy1ORCID,Heumann Christian1

Affiliation:

1. Department of Statistics LMU Munich Germany

Abstract

SummaryThe mixture models are widely used to analyze data with cluster structures and the mixture of Gaussians is most common in practical applications. The use of mixtures involving other multivariate distributions, like the multivariate skew normal and multivariate generalised hyperbolic, is also found in the literature. However, in all such cases, only the mixtures of identical distributions are used to form a mixture model. We present an innovative and versatile approach for constructing mixture models involving identical and non‐identical distributions combined in all conceivable permutations (e.g. a mixture of multivariate skew normal and multivariate generalised hyperbolic). We also establish any conventional mixture model as a distinctive particular case of our proposed framework. The practical efficacy of our model is shown through its application to both simulated and real‐world data sets. Our comprehensive and flexible model excels at recognising inherent patterns and accurately estimating parameters.

Publisher

Wiley

Reference61 articles.

1. mis2019.Rice (Cammeo and Osmancik). UCI Machine Learning Repository https://doi.org/10.24432/C5MW4Z

2. EM algorithm using overparameterization for the multivariate skew‐normal distribution;Abe T.;Econ. Stat.,2021

3. Aeberhard S.&Forina M.1991.Wine. UCI Machine Learning Repository https://doi.org/10.24432/C5PC7J

4. A new look at the statistical model identification;Akaike H.;IEEE Trans. Autom. Control,1974

5. Ana L.N.F.&Jain A.K.(2003).Robust data clustering. In2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003. Proceedings. Vol. 2 pp.II–II IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3