The long wavelength limit of periodic solutions of water wave models

Author:

Bona J. L.1ORCID,Chen H.2,Hong Y.3,Panthee M.4ORCID,Scialom M.4

Affiliation:

1. Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago Chicago Illinois USA

2. Department of Mathematical Sciences University of Memphis Memphis Tennessee USA

3. Department of Mathematical Sciences Korea Advanced Institute of Science and Technology (KAIST), Yuseong Daejeon Republic of Korea (South)

4. Department of Mathematics University of Campinas (UNICAMP) Campinas São Paulo Brazil

Abstract

AbstractThe present essay is concerned with providing rigorous justification of a long‐standing practice in numerical simulation of partial differential equations. Theory often sets initial‐value problems on all of or . If the initial data are localized in space, it has been usual practice to approximate the problem by an associated periodic problem or a homogeneous Dirichlet problem set on a finite interval. While these strategies are commonplace, rigorous justification of the practice is sparse. It is our purpose here to indicate justification of this practice in the concrete context of a surface water wave model. While the theory worked out here is specific to the particular partial differential equation, it will be apparent to the reader that more general results may be derived using the same approach.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

National Research Foundation of Korea

Publisher

Wiley

Reference13 articles.

1. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States

2. FermiE PastaJ UlamS.Studies of nonlinear problems (PDF).Document LA‐1940. Los Alamos National Laboratory. 1955. See also Lectures in Applied Mathematics Vol.15(NewellAC ed.) American Math. Soc.;1974.

3. Fermi, Pasta, Ulam, and a mysterious lady

4. Calculations of the development of an undular bore

5. Model equations for long waves in nonlinear dispersive systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3