Using machine learning techniques in inverse problems of acoustical oceanography

Author:

Smaragdakis Costas12ORCID,Taroudaki Viktoria3ORCID,Taroudakis Michael I.12ORCID

Affiliation:

1. Department of Mathematics and Applied Mathematics University of Crete Heraklion Crete Greece

2. Institute of Applied and Computational Mathematics FORTH Heraklion Crete Greece

3. Department of Mathematics Eastern Washington University Cheney Washington USA

Abstract

AbstractThe goal of the work presented here is to study a novel approach for inverting acoustic signals recorded in the marine environment for the estimation of environmental parameters of the water column and/or the seabed. The proposed approach is based on signal feature extraction using a discrete wavelet packet transform, applied to the measured signal, and hidden Markov models that exploit the sequential patterns of the signals. The signal feature is thereafter used in the framework of a mixture density network, which, after training with sets of simulated signals calculated within a predefined search space, provides conditional posterior distributions of the recoverable parameters. The technique is tested with two test cases corresponding to different types of inverse problems. The first case corresponds to a simple problem of geoacoustic inversion, while the second is referred to a, rather unusual, still interesting problem of recovering the shape of a seamount using long‐range acoustic data. Both test cases are based on simulated experiments. The inversion results obtained using the proposed scheme are compared with inversion results using statistical features of the acoustic signal, which is another inversion approach well documented in the literature and is also based on the wavelet packet transform of the measured signal.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3