On global robustness of an adversarial risk analysis solution

Author:

Yang Jinming1,Joshi Chaitanya1ORCID,Ruggeri Fabrizio2ORCID

Affiliation:

1. Department of Statistics University of Auckland Auckland New Zealand

2. CNR‐IMATI Milano Italy

Abstract

AbstractAdversarial Risk Analysis (ARA) can be a more realistic and practical alternative to traditional game theoretic or decision theoretic approaches for modeling strategic decision‐making in the presence of an adversary. ARA relies on quantifying the decision‐maker's (DM's) uncertainties about the adversary's strategic thinking, choices and utilities via probability distributions to identify the optimal solution for the DM. ARA solution will be sensitive to the choices of prior distributions used for modelling the expert beliefs. Yet, to date, no mathematical results to characterize the robustness of the ARA solution to the misspecification of one or more prior distributions exist. Prior elicitation is known to be challenging. We present the very first mathematical results on the global robustness of the ARA solution. We use the distorted band class of priors and establish the conditions under which an ordering on the ARA solution can be established when modelling the first‐price sealed‐bid auctions using the nonstrategic play and level‐ thinking solution concepts. We illustrate these results using numerical examples and discuss further areas of research.

Publisher

Wiley

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3