Dispersal constrains the biotic connectivity of mountain assemblages

Author:

Peña R.1ORCID,Obeso J. R.1ORCID,Laiolo P.1ORCID

Affiliation:

1. Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias) Mieres Campus, Oviedo University Mieres Spain

Abstract

AbstractAimClimate warming is shifting the bioclimatic optima of species towards mountaintops, but the ability of organisms to track these changes also depends on their dispersal skills. Here, we assessed the role of dispersal over niche‐driven processes in connecting assemblages along mountain slopes and between mountain massifs.LocationCantabrian Mountains, Spain.TaxonBirds (Animalia; Aves) and Lichens (Fungi; Ascomycota, Basidiomycota).MethodsWe examined the change with elevation of community‐level traits that are dispersal proxies (wing shape in birds and type of dispersing propagule in lichens) and ecological niche proxies (micro‐habitat, substrate, and foraging features). We then permutate species composition within sites and massifs to create models of species distribution constrained by dispersal and niche processes. These models were compared with observed species distribution to disclose the relative contribution of dispersal and niche‐based processes in the biotic interchange along mountain slopes (vertical connectivity) and between isolated summits (horizontal connectivity).ResultsBoth bird and lichen communities were formed by species with traits that enhance dispersal at high elevations. These groups also showed similarities in the elevational patterns of niche diversity, which dropped at high elevations. Dispersal was by far the dominant assembly mechanism in both taxa. Pairwise community comparisons among elevation belts showed weak vertical connectivity, with predominant dispersal limitations but also niche barriers between the extremes of the gradient. Among massifs, horizontal connectivity was higher among high mountain assemblages than those from lower elevations.Main ConclusionDispersal was found to be the dominant assembly mechanism in mountain systems, even in taxa with high dispersal potential. Highland assemblages had low functional diversity but their species had high mobility. This permits biotic interchange between isolated summits and, potentially, colonization of other summits as climate warms. Our framework combining traits and occurrence‐permutation models improve the understanding of community assembly mechanisms along elevation gradients and points to dispersal limitations, especially at low‐middle elevations.

Funder

Gobierno del Principado de Asturias

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3