Affiliation:
1. University at Buffalo School of Dental Medicine Buffalo New York USA
2. Department of Oral Diagnostic Sciences University at Buffalo, School of Dental Medicine Buffalo New York USA
3. Division of Paleontology American Museum of Natural History New York New York USA
4. Department of Integrative Biology and Museum of Paleontology University of California Berkeley California USA
Abstract
AbstractForm‐function relationships in mammalian feeding systems are active topics of research in evolutionary biology. This is due principally to their fundamental importance for understanding dietary adaptations in extinct taxa and macro‐evolutionary patterns of morphological transformations through changing environments. We hypothesize that three‐dimensional dental topographic metrics represent stronger predictors for dietary and other ecological variables than do linear measurements. To test this hypothesis, we measured three dental topographic metrics: Relief Index (RFI), Dirichlet Normal Energy (DNE), and Orientation Patch Count Rotated (OPCR) in 57 extant carnivoran species. Premolar and molar dental topographic indices were regressed against activity, diet breadth, habitat breadth, terrestriality, and trophic level variables within a phylogenetic framework. The results of this study showed significant correlations between RFI and the ecological variables diet breadth and trophic level. Weaker correlations are documented between OPCR and activity and between DNE and trophic level. Our results suggest that cusp height is strongly reflective of dietary ecology in carnivorans as a whole, and represents a proxy mainly for different degrees of hypercarnivory observed within this group of predatory mammals.
Funder
American Museum of Natural History
Subject
Cell Biology,Developmental Biology,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Histology,Anatomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献