Identification, spatial distribution, and associated factors of urban protected areas in China

Author:

Zitong Zuo1,Shuyi Wang1,Le Zhong1ORCID

Affiliation:

1. Department of Landscape Architecture, College of Horticulture and Forestry Sciences Huazhong Agricultural University Wuhan China

Abstract

AbstractThe increasing proximity between protected areas (PAs) and urban areas, which can lead to urban protected areas (UPAs), is now commonplace. Use of Euclidean distance to measure the distance between PAs and cities has not correctly portrayed the spatial relationship between PAs and cities. We devised an isochronous circle model to accurately measure the distance between 2706 national PAs in 5 categories and 2844 cities in China based on human accessibility to identify urban human activity‐influenced protected areas (UHAIPAs) and to quantitatively analyze their distribution patterns and relationships with China's economy, population distribution patterns, and urban development indicators. Most of the PAs in China were established near cities. Of 2746 PAs in China, 18.35% (n = 504) became UPAs, and 58.27% (n = 1600), 16.72% (n = 459), and 3.31% (n = 91) of PAs were within 0–30, 30–60, and 60–90 min, respectively. Both UPAs and UHAIPAs in China in general exhibited obvious spatial aggregation characteristics (e.g., wetland parks and scenic areas), and there was a significant spatial dependence effect among characteristics. The degree of spatial distribution and aggregation of UPAs was correlated with 16 indicators across urban economic development, urban natural substrate, and urban policy support factors. Based on the results of our study, we call for various governments and scholars to focus on areas where wetland parks and PAs overlap with urban boundaries. It is important to emphasize the potential link between the development of agriculture, forestry, livestock and fisheries industries, and UPAs. Overall, we believe that examining the accessibility of PAs can more accurately measure the distance between PAs and cities, and more realistically reflect the possible impacts of urban human activities on PAs, which is helpful for strengthening the conservation and management of PAs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3