A class of kth‐order dependence‐driven random coefficient mixed thinning integer‐valued autoregressive process to analyse epileptic seizure data and COVID‐19 data

Author:

Liu Xiufang1ORCID,Wang Dehui2,Chen Huaping3,Zhao Lifang4,Liu Liang1

Affiliation:

1. College of Mathematics Taiyuan University of Technology Taiyuan 030024 People's Republic of China

2. School of Mathematics and Statistics Liaoning University Shenyang 110036 People's Republic of China

3. School of Mathematics and Statistics Henan University Kaifeng 475004 People's Republic of China

4. School of Public Health Shanxi Medical University Taiyuan 030001 People's Republic of China

Abstract

SummaryData related to the counting of elements of variable character are frequently encountered in time series studies. This paper brings forward a new class of th‐order dependence‐driven random coefficient mixed thinning integer‐valued autoregressive time series model (DDRCMTINAR()) to deal with such data. Stationarity and ergodicity properties of the proposed model are derived in detail. The unknown parameters are estimated by conditional least squares, and modified quasi‐likelihood and asymptotic normality of the obtained parameter estimators is established. The performances of the adopted estimate methods are checked via simulations, which present that modified quasi‐likelihood estimators perform better than the conditional least squares considering the proportion of within‐ estimates in certain regions of the parameter space. The validity and practical utility of the model are investigated by epileptic seizure data and COVID‐19 data of suspected cases in China.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3