Affiliation:
1. Department of Hepatology Kanazawa Medical University Uchinada Ishikawa Japan
2. Center for Regenerative Medicine Kanazawa Medical University Hospital Uchinada Ishikawa Japan
Abstract
AbstractMetabolic dysfunction‐associated steatotic liver disease (MASLD) is characterized by intense deposition of fat globules in the hepatic parenchyma that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Here, we evaluated a rat model to study the molecular pathogenesis of the spectrum of MASLD and to screen therapeutic agents. SHRSP5/Dmcr rats were fed a high‐fat and cholesterol (HFC) diet for a period of 12 weeks and evaluated for the development of steatosis (MASLD), steatohepatitis, fibrosis and cirrhosis. A group of animals were sacrificed at the end of the 4th, 6th, 8th and 12th weeks from the beginning of the experiment, along with the control rats that received normal diet. Blood and liver samples were collected for biochemical and histopathological evaluations. Immunohistochemical staining was performed for α‐SMA and Collagen Type I. Histopathological examinations demonstrated steatosis at the 4th week, steatohepatitis with progressive fibrosis at the 6th week, advanced fibrosis with bridging at the 8th week and cirrhosis at the 12th week. Biochemical markers and staining for α‐SMA and Collagen Type I demonstrated the progression of steatosis to steatohepatitis, hepatic fibrosis and liver cirrhosis in a stepwise manner. Control animals fed a normal diet did not show any biochemical or histopathological alterations. The results of the present study clearly demonstrated that the HFC diet‐induced model of steatosis, steatohepatitis, hepatic fibrosis and cirrhosis is a feasible, quick and appropriate animal model to study the molecular pathogenesis of the spectrum of MASLD and to screen potent therapeutic agents.
Funder
Kanazawa Medical University