Chondrule formation during low‐speed collisions of planetesimals: A hybrid splash–flyby framework

Author:

Herbst William1ORCID,Greenwood James P.2

Affiliation:

1. Department of Astronomy Wesleyan University Middletown Connecticut USA

2. Department of Earth and Environmental Sciences Wesleyan University Middletown Connecticut USA

Abstract

AbstractChondrules probably formed during a small window of time ~1–4 Ma after CAIs, when most solid matter in the asteroid belt was already in the form of km‐sized planetesimals. They are unlikely, therefore, to be “building blocks” of planets or abundant on asteroids, but more likely to be a product of energetic events common in the asteroid belt at that epoch. Laboratory experiments indicate that they could have formed when solids of primitive composition were heated to temperatures of ~1600 K and then cooled for minutes to hours. A plausible heat source for this is magma, which is likely to have been abundant in the asteroid belt at that time, and only that time, due to the trapping of 26Al decay energy in planetesimal interiors. Here, we propose that chondrules formed during low‐speed () collisions between large planetesimals when heat from their interiors was released into a stream of primitive debris from their surfaces. Heating would have been essentially instantaneous and cooling would have been on the dynamical time scale, ~30 min, where is the mean density of a planetesimal. Many of the heated fragments would have remained gravitationally bound to the merged object and could have suffered additional heating events as they orbited and ultimately accreted to its surface. This is a hybrid of the splash and flyby models: We propose that it was the energy released from a body's molten interior, not its mass, that was responsible for chondrule formation by heating primitive debris that emerged from the collision.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3