STN7 is not essential for developmental acclimation of Arabidopsis to light intensity

Author:

Flannery Sarah E.1ORCID,Pastorelli Federica1ORCID,Emrich‐Mills Thomas Z.1ORCID,Casson Stuart A.1,Hunter C. Neil1ORCID,Dickman Mark J.2ORCID,Jackson Philip J.12ORCID,Johnson Matthew P.1ORCID

Affiliation:

1. Plants, Photosynthesis and Soil, School of Biosciences University of Sheffield Firth Court, Western Bank Sheffield UK

2. Department of Chemical and Biological Engineering University of Sheffield Sheffield UK

Abstract

SUMMARYPlants respond to changing light intensity in the short term through regulation of light harvesting, electron transfer, and metabolism to mitigate redox stress. A sustained shift in light intensity leads to a long‐term acclimation response (LTR). This involves adjustment in the stoichiometry of photosynthetic complexes through de novo synthesis and degradation of specific proteins associated with the thylakoid membrane. The light‐harvesting complex II (LHCII) serine/threonine kinase STN7 plays a key role in short‐term light harvesting regulation and was also suggested to be crucial to the LTR. Arabidopsis plants lacking STN7 (stn7) shifted to low light experience higher photosystem II (PSII) redox pressure than the wild type or those lacking the cognate phosphatase TAP38 (tap38), while the reverse is true at high light, where tap38 suffers more. In principle, the LTR should allow optimisation of the stoichiometry of photosynthetic complexes to mitigate these effects. We used quantitative label‐free proteomics to assess how the relative abundance of photosynthetic proteins varied with growth light intensity in wild‐type, stn7, and tap38 plants. All plants were able to adjust photosystem I, LHCII, cytochrome b6f, and ATP synthase abundance with changing white light intensity, demonstrating neither STN7 nor TAP38 is crucial to the LTR per se. However, stn7 plants grown for several weeks at low light (LL) or moderate light (ML) still showed high PSII redox pressure and correspondingly lower PSII efficiency, CO2 assimilation, and leaf area compared to wild‐type and tap38 plants, hence the LTR is unable to fully ameliorate these symptoms. In contrast, under high light growth conditions the mutants and wild type behaved similarly. These data are consistent with the paramount role of STN7‐dependent LHCII phosphorylation in tuning PSII redox state for optimal growth in LL and ML conditions.

Funder

Biotechnology and Biological Sciences Research Council

Leverhulme Trust

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3