Forecast‐ready models to support fisheries' adaptation to global variability and change

Author:

Scales Kylie L.1ORCID,Moore Thomas S.2,Sloyan Bernadette2,Spillman Claire M.3,Eveson J. Paige2,Patterson Toby A.2,Williams Ashley J.2,Hobday Alistair J.2,Hartog Jason R.2

Affiliation:

1. Ocean Futures Research Cluster School of Science, Technology & Engineering, University of the Sunshine Coast Queensland Australia

2. CSIRO Environment Castray Esplanade Hobart Tasmania Australia

3. Bureau of Meteorology Melbourne Victoria Australia

Abstract

AbstractOcean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.

Funder

Fisheries Research and Development Corporation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3