Temperature‐sensitive hydrogel releasing pectolinarin facilitate scarless wound healing

Author:

Chen Xiaohang12,Song Haoyue12,Song Kun3,Zhang Yuan12,Wang Jia12,Hong Jinjia12,Xie Qingpeng12,Zhao Jing12,Liu Meixian12,Wang Xing12ORCID

Affiliation:

1. Shanxi Medical University School and Hospital of Stomatology Taiyuan China

2. Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials Taiyuan China

3. Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Laboratory of Facial Plastic and Reconstruction Fujian Medical University Fuzhou China

Abstract

AbstractThe dressing that promotes scarless healing is essential for both normal function and aesthetics after a wound. With a deeper understanding of the mechanisms involved in scar formation during the wound healing process, the ideal dressing becomes clearer and more promising. For instance, the yes‐associated transcriptional regulator (YAP) has been extensively studied as a key gene involved in regulating scar formation. However, there has been limited attention given to pectolinarin, a natural flavonoid that may exhibit strong binding affinity to YAP, in the context of scarless healing. In this study, we successfully developed a temperature‐sensitive Pluronic@F‐127 hydrogel as a platform for delivering pectolinarin to promote scarless wound healing. The bioactive pectolinarin was released from the hydrogel, effectively enhancing endothelial cell migration, proliferation and the expression of angiogenesis‐related genes. Additionally, a concentration of 20 μg/mL of pectolinarin demonstrated remarkable antioxidant ability, capable of counteracting the detrimental effects of reactive oxygen species (ROS). Our results from rat wound healing models demonstrated that the hydrogel accelerated wound healing, promoting re‐epithelialization and facilitating skin appendage regeneration. Furthermore, we discovered that a concentration of 50 μg/mL of pectolinarin incorporated to the hydrogel exhibited the most favourable outcomes in terms of promoting wound healing and minimizing scar formation. Overall, our study highlights that the significant potential of locally released pectolinarin might substantially inhibit YAP and promoting scarless wound healing.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3