Activation of ERK1/2 by MOS and TPL2 leads to dasatinib resistance in chronic myeloid leukaemia cells

Author:

Tsubaki Masanobu1,Takeda Tomoya1,Koumoto Yuuichi1,Usami Takehiro1,Matsuda Takuya1,Seki Shiori1,Sakai Kazuko2,Nishio Kazuto2,Nishida Shozo1ORCID

Affiliation:

1. Division of Pharmacotherapy Kindai University School of Pharmacy Higashi‐Osaka Osaka Japan

2. Department of Genome Biology Kindai University School of Medicine Osakasayama Osaka Japan

Abstract

AbstractThe development of BCR::ABL1 tyrosine kinase inhibitors (TKIs), such as dasatinib, has dramatically improved survival in cases of chronic myeloid leukaemia (CML). However, the development of resistance to BCR::ABL1 TKIs is a clinical problem. BCR::ABL1 TKI resistance is known to have BCR::ABL1‐dependent or BCR::ABL1‐independent mechanisms, but the mechanism of BCR::ABL1 independence is not well understood. In the present study, we investigated the mechanism of BCR::ABL1‐independent dasatinib resistance. The expression and activation level of genes or proteins were evaluated using array CGH, real time PCR, or western blot analysis. Gene expression was modulated using siRNA‐mediated knockdown. Cell survival was assessed by using trypan blue dye method. We found that dasatinib‐resistant K562/DR and KU812/DR cells did not harbour a BCR::ABL1 mutation but had elevated expression and/or activation of MOS, TPL2 and ERK1/2. In addition, MOS siRNA, TPL2 siRNA and trametinib resensitized dasatinib‐resistant cells to dasatinib. Moreover, expression levels of MOS in dasatinib non‐responder patients with CML were higher than those in dasatinib responders, and the expression of TPL2 tended to increase in dasatinib non‐responder patients compared with that in responder patients. Our results indicate that activation of ERK1/2 by elevated MOS and TPL2 expression is involved in dasatinib resistance, and inhibition of these proteins overcomes dasatinib resistance. Therefore, MOS, TPL2 and ERK1/2 inhibitors may be therapeutically useful for treating BCR::ABL1‐independent dasatinib‐resistant CML.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3