Tensile creep properties and damage mechanisms of 2D‐woven C/HfC–SiC composites in high temperature

Author:

Fu Lu1,Wen Shifeng1ORCID,Hou Wanbo1,Shi Xinhao1,Feng Tao1ORCID,Tong Mingde2

Affiliation:

1. School of Mechanics Civil Engineering & Architecture Northwestern Polytechnical University Xi'an Shaanxi PR China

2. State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials Northwestern Polytechnical University Xi'an Shaanxi PR China

Abstract

Abstract2D‐C/HfC–SiC composites were prepared by a combination of precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI). Creep tests were performed at 1100°C in air under different stress conditions. Unlike most, C/SiC and SiC/SiC ceramic matrix composites only underwent primary and secondary creep stages, and the C/HfC–SiC composites underwent tertiary creep stage in the creep process. The reason was that the mechanical properties of C/HfC–SiC materials prepared by PIP + CVI methods were different from those prepared by traditional methods. The microscopic morphological analysis of the sample fracture showed that the oxidation products SiO2 and Hf–Si–O glass phases of the HfC–SiC matrix played a crack filling role in the sample during creep. In turn, it provided effective protection to the internal fibers of the sample. The creep failure of C/HfC–SiC composites in a high‐temperature oxidizing atmosphere was caused by the oxidation of the fibers. The total creep process was dominated by the oxidation of carbon fibers. It is noteworthy that there was the generation of HfxSiyOz nanowires in the samples after high‐temperature creep. The analysis of the experimental data showed that the creep stress had a linear negative correlation with the creep life.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self‐defending mechanism of C/TaC‒SiC composites under 2100°C cyclic ablation environment;International Journal of Applied Ceramic Technology;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3