A ribonuclease T2 protein FocRnt2 contributes to the virulence of Fusarium oxysporum f. sp. cubense tropical race 4

Author:

He Yanqiu12,Li Pengfei1,Zhou Xiaoshu1,Ali Shaukat1,Zhu Jie1,Ma Yini1,Li Jieling1,Zhang Nan1,Li Huaping1,Li Yunfeng1ORCID,Nie Yanfang13ORCID

Affiliation:

1. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection South China Agricultural University Guangzhou China

2. Institute of Plant Protection and Agro‐Products Safety Anhui Academy of Agricultural Sciences Hefei China

3. College of Materials and Energy South China Agricultural University Guangzhou China

Abstract

AbstractBanana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana–Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid‐ and jasmonic acid‐signalling marker genes, reactive oxygen species accumulation, and BAX‐mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence‐related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector‐mediated Foc TR4 pathogenesis.

Funder

China Agricultural Research System

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3