Robustness of Item Response Theory Models under the PISA Multistage Adaptive Testing Designs

Author:

Shin Hyo Jeong1ORCID,König Christoph2,Robin Frederic3ORCID,Frey Andreas2ORCID,Yamamoto Kentaro4

Affiliation:

1. Sogang University

2. Goethe University Frankfurt

3. Educational Testing Service

4. Independent Researcher

Abstract

AbstractMany international large‐scale assessments (ILSAs) have switched to multistage adaptive testing (MST) designs to improve measurement efficiency in measuring the skills of the heterogeneous populations around the world. In this context, previous literature has reported the acceptable level of model parameter recovery under the MST designs when the current item response theory (IRT)‐based scaling models are used. However, previous studies have not considered the influence of realistic phenomena commonly observed in ILSA data, such as item‐by‐country interactions, repeated use of MST designs in subsequent cycles, and nonresponse, including omitted and not‐reached items. The purpose of this study is to examine the robustness of current IRT‐based scaling models to these three factors under MST designs, using the Programme for International Student Assessment (PISA) designs as an example. A series of simulation studies show that the IRT scaling models used in the PISA are robust to repeated use of the MST design in a subsequent cycle with fewer items and smaller sample sizes, while item‐by‐country interactions and items not‐reached have negligible to modest effects on model parameter estimation, and omitted responses have the largest effect. The discussion section provides recommendations and implications for future MST designs and scaling models for ILSAs.

Publisher

Wiley

Reference47 articles.

1. Altering the Level of Difficulty in Computer Adaptive Testing

2. Multiple Group IRT

3. Buchholz J. Shin H. J. &Bolsinova M.(2023).Test engagement and multistage adaptive testing. Paper presented at the annual meeting of the National Council on Measurement in Education (NCME) Chicago IL.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3