Geochemical signatures of metapelites in the Highland Complex, Sri Lanka and Trivandrum Block, India: Implications for provenance, nature and tectonic setting of their source protoliths

Author:

Athauda A. M. M. G. I. U. B.1ORCID,Dharmapriya P. L.1ORCID,Malaviarachchi S. P. K.1ORCID,Sajeev K.2ORCID

Affiliation:

1. Department of Geology University of Peradeniya Peradeniya Sri Lanka

2. Center for Earth Sciences Indian Institute of Science Bangalore India

Abstract

AbstractThe investigation of whole‐rock major and trace element geochemical data from metapelites, incorporating analyses from both previous studies and new localities within the Highland Complex (HC) of Sri Lanka and the Trivandrum Block of India (TB), aimed to discern the nature and tectonic setting of their provenance. Examination of chondritic REE distribution and K versus K/Rb diagrams suggests that the geochemistry of the studied metapelites closely resembles typical Post Archaean Australian Shale (PAAS), North American Shale Composite (NASC), and Upper Continental Crust (UCC), indicating minimal modification during high‐grade metamorphism. Predominantly, the protoliths of the metasediments appear to be shales and greywackes derived from Proterozoic felsic to intermediate sources. Tectonic discrimination diagrams reveal that most metapelites correspond to active continental margins and continental island arcs. These geochemical characteristics suggest that the majority of studied metapelites in the HC and TB originate from felsic to intermediate sources, likely deposited within a continental arc setting. Subsequently, these sediments likely accreted in an accretionary prism and underwent metamorphism during continental‐continental collision. The congruence in geochemical signatures between metapelites in the HC and TB, along with established tectonic, geochronological, petrological, mineralogical, and geophysical correlations, implies that precursor sediments of metasedimentary rocks were likely deposited within a laterally extensive Neoproterozoic sedimentary basin.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3