Seasonal effects and trophic pressure shape the responses of species interactions in a tropical seagrass meadow to marine heatwaves

Author:

Bass Alissa V.1ORCID,Falkenberg Laura J.12ORCID

Affiliation:

1. Simon F. S. Li Marine Science Laboratory, The Chinese University of Hong Kong New Territories Hong Kong

2. UniSA STEM, University of South Australia Adelaide SA Australia

Abstract

Species interactions are influenced by changes to the environment, such as seasonal variations in temperature, and human‐driven warming including marine heatwaves (MHWs). Alteration of species interactions, particularly those involving foundation species, can shape ecosystem structure, stability and dynamics. Marine habitats, notably seagrass meadows, are threatened by human‐driven environmental changes including MHWs which have the potential to alter trophic interactions through effects on various community members including seagrasses, epiphytic algae, and epiphytic algae grazers. Here we examined the effects of a simulated marine heatwave (control versus + 4°C) in different seasons and grazer occurrence on seagrass traits, epiphytic algae growth, grazer biomass and grazing rate. We found the season in which the MHW occurred affected the seagrass response and grazer influence. In winter, the MHW had positive effects on seagrass growth and nitrogen content and caused significant decreases in epiphytic algae growth. However, in summer, grazer presence increased seagrass growth and biomass, but growth was reduced by the interaction with the MHW. The season in which the MHW occurred affected the magnitude of change in leaf tissue isotopic values and C:N ratio, with greater changes occurring in summer. Epiphytic algal growth was markedly reduced by the interaction between all three factors, leading to the near lack of epiphyte growth in summer with grazers present under the MHW. Summer was also associated with a greater increase in snail biomass (most notably under MHW conditions), and increased snail grazing rate. From these results, we show that winter MHWs can drive increased growth of seagrasses but minimal impacts on grazers, while in summer increased grazer activity can interact with elevated temperatures from a MHW to increase their algal consumption. By examining responses across multiple trophic levels and distinct seasons, we achieve a more representative and realistic depiction of human‐induced environmental impacts on ecosystems.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3