Metabolic response of auditory brainstem neurons to their broad physiological activity range

Author:

Palandt Nicola12,Resch Cibell1,Unterlechner Patricia1,Voshagen Lukas1,Winhart Valentin R.12,Kunz Lars1ORCID

Affiliation:

1. Division of Neurobiology, Faculty of Biology Ludwig‐Maximillians‐Universität (LMU) Munich Germany

2. Graduate School of Systemic Neurosciences (GSN) Ludwig‐Maximillians‐Universität (LMU) Munich Germany

Abstract

AbstractNeurons exhibit a high energetic need, and the question arises as how they metabolically adapt to changing activity states. This is relevant for interpreting functional neuroimaging in different brain areas. Particularly, neurons with a broad firing range might exhibit metabolic adaptations. Therefore, we studied MNTB (medial nucleus of the trapezoid body) principal neurons, which generate action potentials (APs) at frequencies up to several hundred hertz. We performed the experiments in acute brainstem slices of the Mongolian gerbil (Meriones unguiculatus) at 22.5–24.5°C. Upon electrical stimulation of afferent MNTB fibres with 400 stimuli at varying frequencies, we monitored autofluorescence levels of NAD(P)H and FAD and determined the extremum amplitudes of their biphasic response. Additionally, we compared these data with alterations in O2 concentrations measured with an electrochemical sensor. These O2 changes are prominent since MNTB neurons rely on oxidative phosphorylation as shown by our pharmacological experiments. We calculated the O2 consumption rate as change in O2 concentration divided by stimulus durations, because these periods varied inversely with stimulus frequency as a result of the constant number of 400 stimuli applied. The O2 consumption rate increased with stimulation frequency up to a constant value at 600 Hz; that is, energy demand depends on temporal characteristics of activity despite the same number of stimuli. The rates showed no correlation with peak amplitudes of NAD(P)H or FAD, whilst the values of the two molecules were linearly correlated. This points at the complexity of analysing autofluorescence imaging for quantitative metabolic studies, because these values report only relative net changes of many superimposed oxidative and reductive processes. Monitoring O2 concentration rates is, thus, an important tool to improve the interpretation of NAD(P)H/FAD autofluorescence data, as they do not under all conditions and in all systems appropriately reflect the metabolic activity or energy demand.image

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3