Multichannel seismic data attenuation compensation via curvelet‐based sparsity promotion

Author:

Mo Tongtong1ORCID,Yin Ying1,Luo Ren1,Wang Benfeng1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

Abstract

AbstractDue to subsurface viscosity and heterogeneity, the vertical resolution of observed seismic data is decreased after wave propagation, generating nonstationary seismic data with amplitude attenuation and phase distortion. Inverse Q filtering techniques are always used to enhance the vertical resolution of seismic data. However, the majority of inverse Q filtering methods treat attenuation compensation trace by trace, which may produce non‐robust compensation results with poor transverse continuity and amplify noise energy in noisy cases. Thus, we develop a novel sparsity‐promoting inversion‐based multichannel seismic data attenuation compensation approach by introducing a sparse constraint for curvelet coefficients of multichannel compensated data, which takes the transverse continuity of compensated data into account. Besides, the proposed method with a sparse constraint for curvelet coefficients has a better noise‐resistance property, which can attenuate the noise energy in noisy cases during attenuation compensation, improving compensation accuracy and robustness. To improve its computational efficiency, a fast iterative shrinkage–thresholding algorithm is adopted to solve the established lasso problem. Synthetic data examples with different noise levels and two post‐stack field data examples validate the effectiveness of the proposed multichannel method. Its compensation results have superior vertical resolution, transverse continuity and noise robustness in comparison to the conventional single‐channel compensation method using a damped least squares algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3