Whole blood transcriptional profiling reveals highly deregulated atherosclerosis genes in Philadelphia‐chromosome negative myeloproliferative neoplasms

Author:

Skov Vibe1ORCID,Thomassen Mads2,Kjær Lasse1ORCID,Larsen Morten Kranker1,Knudsen Trine A.1,Ellervik Christina3,Kruse Torben A.2,Hasselbalch Hans Carl1ORCID

Affiliation:

1. Department of Hematology Zealand University Hospital Roskilde Denmark

2. Department of Clinical Genetics Odense University Hospital Odense Denmark

3. Department of Pathology Harvard Medical School Boston Massachusetts USA

Abstract

AbstractBackgroundThe Philadelphia‐negative chronic myeloproliferative neoplasms (MPNs) are associated with a huge comorbidity burden, including an increased risk of cardiovascular diseases. Recently, chronic inflammation has been suggested to be the driving force for clonal evolution and disease progression in MPN but also potentially having an impact upon the development of accelerated (premature) atherosclerosis.ObjectivesSince chronic inflammation, atherosclerosis, and atherothrombosis are prevalent in MPNs and we have previously shown oxidative stress genes to be markedly upregulated in MPNs, we hypothesized that genes linked to development of atherosclerosis might be highly deregulated as well.MethodsUsing whole blood gene expression profiling in patients with essential thrombocythemia (ET; n = 19), polycythemia vera (PV; n = 41), or primary myelofibrosis (PMF; n = 9), we herein for the first time report aberrant expression of several atherosclerosis genes.ResultsOf 84 atherosclerosis genes, 45, 56, and 46 genes were deregulated in patients with ET, PV, or PMF, respectively. Furthermore, BCL2L1, MMP1, PDGFA, PTGS1, and THBS4 were progressively significantly upregulated and BCL2 progressively significantly downregulated from ET over PV to PMF (all FDR <0.05).ConclusionsWe have for the first time shown massive deregulation of atherosclerosis genes in MPNs, likely reflecting the inflammatory state in MPNs in association with in vivo activation of leukocytes, platelets, and endothelial cells being deeply involved in the atherosclerotic process.

Publisher

Wiley

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3