Plant and fungal gene expression coupled with stable isotope labeling provide novel information on sulfur uptake and metabolism in orchid mycorrhizal protocorms

Author:

De Rose Silvia1,Kuga Yukari2,Sillo Fabiano3,Fochi Valeria1,Sakamoto Naoya4,Calevo Jacopo1,Perotto Silvia1,Balestrini Raffaella3ORCID

Affiliation:

1. Dipartimento di Scienze della Vita e Biologia dei Sistemi Università degli Studi di Torino Viale Mattioli, 25 10125 Torino Italy

2. Graduate School of Integrated Sciences for Life Hiroshima University Higashihiroshima Hiroshima 739‐8521 Japan

3. Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante Strada delle Cacce 73 10135 Torino Italy

4. Isotope Imaging Laboratory, Creative Research Institute Hokkaido University Sapporo 001‐0021 Japan

Abstract

SUMMARYOrchid mycorrhiza (OM) represents an unusual symbiosis between plants and fungi because in all orchid species carbon is provided to the host plant by the mycorrhizal fungus at least during the early stages of orchid development, named a protocorm. In addition to carbon, orchid mycorrhizal fungi provide the host plant with essential nutrients such as phosphorus and nitrogen. In mycorrhizal protocorms, nutrients transfer occurs in plant cells colonized by the intracellular fungal coils, or pelotons. Whereas the transfer of these vital nutrients to the orchid protocorm in the OM symbiosis has been already investigated, there is currently no information on the transfer of sulfur (S). Here, we used ultra‐high spatial resolution secondary ion mass spectrometry (SIMS) as well as targeted gene expression studies and laser microdissection to decipher S metabolism and transfer in the model system formed by the Mediterranean orchid Serapias vomeracea and the mycorrhizal fungus Tulasnella calospora. We revealed that the fungal partner is actively involved in S supply to the host plant, and expression of plant and fungal genes involved in S uptake and metabolism, both in the symbiotic and asymbiotic partners, suggest that S transfer most likely occurs as reduced organic forms. Thus, this study provides original information about the regulation of S metabolism in OM protocorms, adding a piece of the puzzle on the nutritional framework in OM symbiosis.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3