Phylogeography and local environmental adaptation in the differentiation of Leptocorisa sister species in East Asia

Author:

Dong Xue1ORCID,Zhu Xiuxiu1,Tang Zechen1ORCID,Yi Wenbo2,Xue Huaijun1,Ye Zhen1,Zheng Chenguang1,Bu Wenjun1

Affiliation:

1. Institute of Entomology, College of Life Sciences Nankai University Tianjin 300071 China

2. Department of Biology Xinzhou Normal University Xinzhou 034000 China

Abstract

AbstractA full understanding of local adaptation at the genomic level will help to elucidate its role in the differentiation between closely related species. This study focused on rice seed bugs sister species (Leptocorisa chinensis and Leptocorisa oratoria), which are native to East Asia and are notorious pests targeting growing rice spikelets. East Asia is a region where diverse geology and fluctuating climate are known to have profound impacts on organisms. In this study, single nucleotide polymorphisms (SNPs) from double‐digest restriction site‐associated DNA sequencing and geographic distribution information were used to investigate phylogeography and assess the environmental contribution to genetic variation. We found clear genetic differentiation between sister species, but a lack of genetic structure within species because of their long‐distance dispersal ability. The demographic model involved a scenario in which divergence in isolation (~0.6 Ma) was followed by secondary contact (~7 kya). The initial divergence may have been caused by the intensification of the East Asian monsoon during the Pleistocene climate oscillation. The historical demography indicated that the effective population size (Ne) showed an evident increase from 9 to 7 kya, which may be related to rice domestication and extensive human cultivation during the Holocene. We also detected a significant correlation between genetic and environmental distance, and the niche difference occupied between them. Temperature‐related variables were ranked as the main factors for the difference, and 410 selective SNPs involved in adaptation were identified. The Nanling Mountains in southern China serve as a geographical boundary between them and act as an ecological barrier belt that promotes local environmental adaptation. Our study demonstrates that historical climate change and local adaptation by climate‐imposed selection shape the phylogeographical patterns of sister species.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3