Universal decomposition model: An efficient technique for palaeoenvironmental reconstruction from grain‐size distributions

Author:

Liu Yuming12ORCID,Wang Ting13,Liu Bo4,Long Yili12,Liu Xingxing15,Sun Youbin15

Affiliation:

1. State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment, Chinese Academy of Sciences Xi'an 710061 China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. Faculty of Civil Engineering Hubei Engineering University Xiaogan 432000 China

4. Xi'an Institute for Innovative Earth Environment Research Xi'an 710061 China

5. CAS Centre for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences Xi'an 710061 China

Abstract

ABSTRACTFor many years, researchers have used the decomposition of grain‐size distributions to acquire critical information on provenances, transport dynamics and depositional environments. This study presents a novel decomposition method, termed the universal decomposition model, for analysing grain‐size data. The universal decomposition model unifies single‐sample unmixing and end‐member modelling analysis approaches and overcomes their respective limitations. To evaluate the effectiveness of the universal decomposition model, an artificial dataset and borehole data from the west Weihe Basin were analysed. Results indicate that the universal decomposition model algorithm performs proficiently on both datasets. Correlation analysis was employed to compare the abilities of universal decomposition model, single‐sample unmixing and end‐member modelling analysis to extract minor signals, with universal decomposition model and single‐sample unmixing exhibiting greater proficiency. Furthermore, the universal decomposition model provides a broader perspective for contrasting single‐sample unmixing and end‐member modelling analysis. The study highlights the inadequacy of the statistical method for determining the optimal number of components and summarizes an empirical approach. Moreover, disregarding the potential diversity in component shapes of real‐world sediments has been demonstrated to be a sub‐optimal design. Finally, this article presents results of a new investigation into the geological significance of sediment grain sizes revealed by various analytical methods that suggest that the universal decomposition model has enormous potential in reconstructing paleoenvironment.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

Stratigraphy,Geology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3