Bayesian multilevel hidden Markov models identify stable state dynamics in longitudinal recordings from macaque primary motor cortex

Author:

Kirchherr Sebastien12ORCID,Mildiner Moraga Sebastian3ORCID,Coudé Gino124,Bimbi Marco12ORCID,Ferrari Pier F.12ORCID,Aarts Emmeke3ORCID,Bonaiuto James J.12ORCID

Affiliation:

1. Institut des Sciences Cognitives Marc Jeannerod CNRS UMR 5229 Bron France

2. Université Claude Bernard Lyon 1, Université de Lyon France

3. Department of Methodology and Statistics Universiteit Utrecht Utrecht Netherlands

4. Inovarion Paris France

Abstract

AbstractNeural populations, rather than single neurons, may be the fundamental unit of cortical computation. Analysing chronically recorded neural population activity is challenging not only because of the high dimensionality of activity but also because of changes in the signal that may or may not be due to neural plasticity. Hidden Markov models (HMMs) are a promising technique for analysing such data in terms of discrete latent states, but previous approaches have not considered the statistical properties of neural spiking data, have not been adaptable to longitudinal data, or have not modelled condition‐specific differences. We present a multilevel Bayesian HMM addresses these shortcomings by incorporating multivariate Poisson log‐normal emission probability distributions, multilevel parameter estimation and trial‐specific condition covariates. We applied this framework to multi‐unit neural spiking data recorded using chronically implanted multi‐electrode arrays from macaque primary motor cortex during a cued reaching, grasping and placing task. We show that, in line with previous work, the model identifies latent neural population states which are tightly linked to behavioural events, despite the model being trained without any information about event timing. The association between these states and corresponding behaviour is consistent across multiple days of recording. Notably, this consistency is not observed in the case of a single‐level HMM, which fails to generalise across distinct recording sessions. The utility and stability of this approach is demonstrated using a previously learned task, but this multilevel Bayesian HMM framework would be especially suited for future studies of long‐term plasticity in neural populations.

Funder

Fondation pour la Recherche Médicale

H2020 European Research Council

National Institutes of Health

Publisher

Wiley

Subject

General Neuroscience

Reference67 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3