Affiliation:
1. Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
2. Department of Chemistry State University of New York Stony Brook Stony Brook New York USA
Abstract
AbstractZrW2O8 (ZrO2•2WO3) and HfW2O8 (HfO2•2WO3) have been the focus of thermal expansion studies due to their isotropic negative thermal expansion (NTE) measured previously at temperatures below 775°C. This work presents measurements of these materials at their thermodynamically stable temperature ranges of 1105 and 1257°C for ZrW2O8 and 1105–1276°C for HfW2O8, where they were characterized with in situ, powder X‐ray diffraction. The linear coefficients of thermal expansion were measured to be −5.52 × 10−6 and −4.87 × 10−6°C−1 for ZrW2O8 and HfW2O8, respectively. The mechanism leading to this NTE is discussed. Powder samples were synthesized by a solution‐based process called the organic–inorganic steric entrapment method. In situ characterization in air was carried out at the National Synchrotron Light Source II using a hexapole lamp, optical furnace and the Advanced Photon Source using a quadrupole lamp, optical furnace to achieve elevated temperatures.
Funder
National Science Foundation