Relationship Between Advanced Footwear Technology Longitudinal Bending Stiffness and Energy Cost of Running

Author:

Rodrigo‐Carranza Víctor12ORCID,Hoogkamer Wouter2ORCID,González‐Ravé José María1,González‐Mohíno Fernando13ORCID

Affiliation:

1. Sports Performance Research Group (GIRD), University of Castilla‐La Mancha Toledo Spain

2. Integrative Locomotion Laboratory, Department of Kinesiology University of Massachusetts Amherst Massachusetts USA

3. Facultad de Ciencias de la Vida y de la Naturaleza Universidad Nebrija Madrid Spain

Abstract

ABSTRACTIntroduction/PurposeShoe longitudinal bending stiffness (LBS) is often considered to influence running economy (RE) and thus, running performance. However, previous results are mixed and LBS levels have not been studied in advanced footwear technology (AFT). The purpose of this study was to evaluate the effects of increased LBS from curved carbon fiber plates embedded within an AFT midsole compared to a traditional running shoe on RE and spatiotemporal parameters.MethodsTwenty‐one male trained runners completed three times 4 min at 13 km/h with two experimental shoe models with a curved carbon fiber plate embedded in an AFT midsole with different LBS values (Stiff: 35.5 N/mm and Stiffest: 43.1 N/mm), and a Control condition (no carbon fiber plate: 20.1 N/mm). We measured energy cost of running (W/kg) and spatiotemporal parameters in one visit.ResultsRE improved for the Stiff shoe condition (15.71 ± 0.95 W/kg; p < 0.001; n2 = 0.374) compared to the Control condition (16.13 ± 1.08 W/kg; 2.56%) and Stiffest condition (16.03 ± 1.19 W/kg; 1.98%). However, we found no significant differences between the Stiffest and Control conditions. Moreover, there were no spatiotemporal differences between shoe conditions.ConclusionChanges in LBS in AFT influences RE suggesting that moderately stiff shoes have the most effective LBS to improve RE in AFT compared to very stiff shoes and traditional, flexible shoe conditions while running at 13 km/h.

Funder

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3