Single‐Image SVBRDF Estimation with Learned Gradient Descent

Author:

Luo X.1ORCID,Scandolo L.1ORCID,Bousseau A.12ORCID,Eisemann E.1ORCID

Affiliation:

1. Delft University of Technology The Netherlands

2. Inria, Université Côte d'Azur France

Abstract

AbstractRecovering spatially‐varying materials from a single photograph of a surface is inherently ill‐posed, making the direct application of a gradient descent on the reflectance parameters prone to poor minima. Recent methods leverage deep learning either by directly regressing reflectance parameters using feed‐forward neural networks or by learning a latent space of SVBRDFs using encoder‐decoder or generative adversarial networks followed by a gradient‐based optimization in latent space. The former is fast but does not account for the likelihood of the prediction, i.e., how well the resulting reflectance explains the input image. The latter provides a strong prior on the space of spatially‐varying materials, but this prior can hinder the reconstruction of images that are too different from the training data. Our method combines the strengths of both approaches. We optimize reflectance parameters to best reconstruct the input image using a recurrent neural network, which iteratively predicts how to update the reflectance parameters given the gradient of the reconstruction likelihood. By combining a learned prior with a likelihood measure, our approach provides a maximum a posteriori estimate of the SVBRDF. Our evaluation shows that this learned gradient‐descent method achieves state‐of‐the‐art performance for SVBRDF estimation on synthetic and real images.

Publisher

Wiley

Reference41 articles.

1. Learning to learn by gradient descent by gradient descent;Andrychowicz Marcin;Advances in neural information processing systems,2016

2. Deep SVBRDF Estimation on Real Materials

3. Two‐shot SVBRDF capture for stationary materials;Aittala Miika;ACM Transactions on Graphics (Proc. SIGGRAPH),2015

4. Practical SVBRDF capture in the frequency domain;Aittala Miika;ACM Trans. Graph.,2013

5. A Reflectance Model for Computer Graphics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3