Single locus HLA sequencing with the nanopore technology for HLA disease association diagnosis

Author:

Devriese Magali12ORCID,Rouquie Julien1,Da Silva Sephora1,Benassaya Nadine1,Maillard Lucie1,Dewez Mathieu3,Caillat‐Zucman Sophie12ORCID,Werner Gregory3ORCID,Taupin Jean‐Luc12ORCID

Affiliation:

1. Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis Paris France

2. INSERM UMR976, Institut de Recherche Saint‐Louis, Université de Paris Paris France

3. Omixon Biocomputing Ltd. H‐1117 Budapest Kaposvár Hungary

Abstract

Associations between HLA genotype and disease susceptibility encompass almost all the classic HLA loci. The level of typing resolution enabling a correct identification of an HLA disease susceptibility gene depends on the disease itself and/or on the accumulated knowledge about the molecular involvement of the HLA allele(s) engaged. Therefore, the application of Next Generation Sequencing technologies to HLA disease association, which would improve typing resolution, could prove useful to better understand disease severity. In the present study, we tested a nanopore sequencing approach developed by Omixon Biocomputing Ltd, dedicated to on‐demand locus typing for HLA and disease, as an alternative to the conventional widely used sequence specific oligoprobe (SSO) approach. A total of 145 DNA samples used in routine diagnosis by SSO were retrospectively analyzed with nanopore technology, for HLA‐A*02 immunotherapy decision for A*29, B*27, B*51, B*57 identification in class I, and DRB1, DQA1, and DQB1 for bullous dermatosis, rheumatoid arthritis, diabetes, and celiac disease requests in class II. Each locus was typed in a separate experiment, except for DQB1 and DQA1, which were analyzed together. Concordance between typings reached 100% for all the loci tested. Ambiguities by nanopore were only found for missing exon coverage. This approach was found to be very well adapted to the routine flow imposed by the SSO technique. This study illustrates the use of the new NanoTYPE MONO kit for single locus HLA sequencing for HLA and disease association diagnosis.

Funder

Fondation pour la Recherche Médicale

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3