Interaction matters: Bottom‐up driver interdependencies alter the projected response of phytoplankton communities to climate change

Author:

Seifert Miriam1ORCID,Nissen Cara1ORCID,Rost Björn12ORCID,Vogt Meike3ORCID,Völker Christoph1ORCID,Hauck Judith1ORCID

Affiliation:

1. Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany

2. FB2 Universität Bremen Bremen Germany

3. Institute for Biogeochemistry and Pollutant Dynamics ETH Zürich Zürich Switzerland

Abstract

AbstractPhytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large‐scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple‐driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual‐driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta‐analysis on multiple‐driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present‐day and future high‐emission (SSP5‐8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group‐specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small‐phytoplankton biomass, by contrast, decreases less with on‐going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3