Estimation of contemporary effective population size in plant populations: Limitations of genomic datasets

Author:

Gargiulo Roberta1ORCID,Decroocq Véronique2ORCID,González‐Martínez Santiago C.3ORCID,Paz‐Vinas Ivan45ORCID,Aury Jean‐Marc6,Lesur Kupin Isabelle3,Plomion Christophe3ORCID,Schmitt Sylvain7ORCID,Scotti Ivan8,Heuertz Myriam3ORCID

Affiliation:

1. Royal Botanic Gardens, Kew Richmond UK

2. INRAE Univ. Bordeaux, UMR 1332 BFP Villenave d'Ornon France

3. INRAE Univ. Bordeaux Cestas France

4. Department of Biology Colorado State University Fort Collins Colorado USA

5. CNRS, ENTPE, UMR5023 LEHNA Université Claude Bernard Lyon 1 Villeurbanne France

6. Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry Université Paris‐Saclay Evry France

7. AMAP Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France

8. INRAE, URFM Avignon France

Abstract

AbstractEffective population size (Ne) is a pivotal evolutionary parameter with crucial implications in conservation practice and policy. Genetic methods to estimate Ne have been preferred over demographic methods because they rely on genetic data rather than time‐consuming ecological monitoring. Methods based on linkage disequilibrium (LD), in particular, have become popular in conservation as they require a single sampling and provide estimates that refer to recent generations. A software program based on the LD method, GONE, looks particularly promising to estimate contemporary and recent‐historical Ne (up to 200 generations in the past). Genomic datasets from non‐model species, especially plants, may present some constraints to the use of GONE, as linkage maps and reference genomes are seldom available, and SNP genotyping is usually based on reduced‐representation methods. In this study, we use empirical datasets from four plant species to explore the limitations of plant genomic datasets when estimating Ne using the algorithm implemented in GONE, in addition to exploring some typical biological limitations that may affect Ne estimation using the LD method, such as the occurrence of population structure. We show how accuracy and precision of Ne estimates potentially change with the following factors: occurrence of missing data, limited number of SNPs/individuals sampled, and lack of information about the location of SNPs on chromosomes, with the latter producing a significant bias, previously unexplored with empirical data. We finally compare the Ne estimates obtained with GONE for the last generations with the contemporary Ne estimates obtained with the programs currentNe and NeEstimator.

Funder

European Cooperation in Science and Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3