Heatwaves increase larval mortality and delay development of a solitary bee

Author:

Melone Grace G.12ORCID,Stuligross Clara134,Williams Neal M.13

Affiliation:

1. Department of Entomology and Nematology University of California Davis California USA

2. Department of Entomology University of Wisconsin Madison Wisconsin USA

3. Graduate Group in Ecology University of California Davis California USA

4. Department of Evolution, Ecology, and Organismal Biology University of California Riverside California USA

Abstract

Abstract Heatwaves are expected to increase in frequency, intensity and duration due to climate change. For organisms like insects with discrete development, sensitivity may differ among life stages. Thermal sensitivity is of particular concern for species like bees that provide critical ecosystem services. Although social bees moderate nest temperatures through worker behaviour, solitary bees do not thermoregulate their nests, making immobile developing offspring especially vulnerable to such extreme events. We studied the effects of heatwaves on larval development in the solitary bee, Osmia lignaria, an important orchard pollinator and model species for solitary bee biology. We used a factorial design to assess the impacts of heatwave temperature and duration on larval mortality and development rate. Larvae were exposed to heatwaves under realistic diel temperature regimes, with daytime maxima of 31 or 37°C for 4 or 7 days at the beginning of development. Heatwave temperature strongly affected larval mortality. Exposure to 37°C heatwaves increased larval mortality by 130%, but the cooler 31°C heatwaves did not significantly impact mortality. Heatwave duration did not impact larval mortality. Larval development time also was affected by heatwave exposure. Compared with the no‐heatwave‐control, bees in the 31°C heatwave developed faster, and bees in the 37°C heatwave developed slower. Our study reveals the importance of stage‐specific effects of extreme events and suggests that the timing and maximum temperature of projected heatwaves may be more detrimental to populations than heatwave duration.

Funder

National Science Foundation

College of Agricultural and Environmental Sciences, University of California, Davis

Division of Environmental Biology

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3