Affiliation:
1. Department of Earth, Energy, and Environment University of Calgary Calgary Alberta Canada
Abstract
AbstractCyanobacteria have many biotechnological applications. Increasing their cultivation pH can assist in capturing carbon dioxide and avoiding invasion by other organisms. However, alkaline media may have adverse effects on cyanobacteria, such as reducing the Carbon‐Concentrating Mechanism's efficiency. Here, we cultivated two halo‐alkaliphilic cyanobacteria consortia in chemostats at pH 10.2–11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.
Funder
University of Calgary
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation