Long‐term droughts change the hatching patterns of zooplankton resting eggs from permanent and temporary lakes

Author:

Vargas Anderson L.1,Brazil Thamires2,Santangelo Jayme M.2ORCID,Bozelli Reinaldo L.1

Affiliation:

1. Departamento de Ecologia Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Rio de Janeiro Brasil

2. Departamento de Ciências Ambientais Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica Rio de Janeiro Brasil

Abstract

Abstract Resting eggs are commonly produced by zooplankton inhabiting permanent and temporary lakes. Although resting eggs are acknowledged to survive varying harsh conditions, the effects of desiccation on the viability and hatching patterns of resting eggs are not fully understood and might be context‐dependent. This study simulated one long‐term (1 year) dry‐out episode in wet sediments originating from permanent and temporary lakes and compared hatching patterns through ex situ experiments. The abundance and species richness of hatchlings decreased in dry sediments compared to wet sediments. Hatchling composition differed between wet and dry sediments of each lake category, whereas community variability did not differ between wet and dry sediments of temporary lakes. Overall, there was no difference in the ability of rotifers and crustaceans to cope with desiccation, since all species decreased hatchling numbers after desiccation. Artemia was the only taxon that benefited from drying sediments. Long‐term desiccation may affect the contribution of resting egg banks to future active populations in the water column, even in temporary habitats which presumably select for drought‐resistant resting eggs. The ecological roles played by resting egg banks may be weakening because droughts are becoming more common worldwide, even in former permanent aquatic habitats.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3