Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries

Author:

Bravetti A.1,Grillo S.23,Marrero J. C.4,Padrón E.4

Affiliation:

1. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de México Mexico City Mexico

2. Instituto Balseiro Universidad Nacional de Cuyo San Carlos de Bariloche Argentine Republic

3. CONICET San Carlos de Bariloche Argentine Republic

4. ULL‐CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemáticas, Estadística e Investigación Operativa and Instituto de Matemáticas y Aplicaciones (IMAULL) University of La Laguna San Cristóbal de La Laguna Spain

Abstract

AbstractIn this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so‐called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of . We also discuss a reconstruction process for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.

Funder

Ministerio de Ciencia e Innovación

Publisher

Wiley

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3