Explainable machine learning prediction of edema adverse events in patients treated with tepotinib

Author:

Amato Federico1,Strotmann Rainer2,Castello Roberto1,Bruns Rolf2,Ghori Vishal3,Johne Andreas2ORCID,Berghoff Karin2,Venkatakrishnan Karthik4,Terranova Nadia5ORCID

Affiliation:

1. Swiss Data Science Center (EPFL and ETH Zurich) Lausanne Switzerland

2. The healthcare business of Merck KGaA Darmstadt Germany

3. Ares Trading S.A., Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt Germany

4. EMD Serono Billerica Massachusetts USA

5. Quantitative Pharmacology Ares Trading S.A., Lausanne, Switzerland, an affiliate of Merck KGaA Darmstadt Germany

Abstract

AbstractTepotinib is approved for the treatment of patients with non‐small‐cell lung cancer harboring MET exon 14 skipping alterations. While edema is the most prevalent adverse event (AE) and a known class effect of MET inhibitors including tepotinib, there is still limited understanding about the factors contributing to its occurrence. Herein, we apply machine learning (ML)‐based approaches to predict the likelihood of occurrence of edema in patients undergoing tepotinib treatment, and to identify factors influencing its development over time. Data from 612 patients receiving tepotinib in five Phase I/II studies were modeled with two ML algorithms, Random Forest, and Gradient Boosting Trees, to predict edema AE incidence and severity. Probability calibration was applied to give a realistic estimation of the likelihood of edema AE. Best model was tested on follow‐up data and on data from clinical studies unused while training. Results showed high performances across all the tested settings, with F1 scores up to 0.961 when retraining the model with the most relevant covariates. The use of ML explainability methods identified serum albumin as the most informative longitudinal covariate, and higher age as associated with higher probabilities of more severe edema. The developed methodological framework enables the use of ML algorithms for analyzing clinical safety data and exploiting longitudinal information through various covariate engineering approaches. Probability calibration ensures the accurate estimation of the likelihood of the AE occurrence, while explainability tools can identify factors contributing to model predictions, hence supporting population and individual patient‐level interpretation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3