The genome‐wide response of Dermatophagoides pteronyssinus to cystatin A, a peptidase inhibitor from human skin, sheds light on its digestive physiology and allergenicity

Author:

Vidal‐Quist José Cristian1ORCID,Ortego Félix1,Rombauts Stephane23,Hernández‐Crespo Pedro1

Affiliation:

1. Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC Madrid Spain

2. Center for Plant Systems Biology, VIB Ghent Belgium

3. Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium

Abstract

AbstractThe digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen‐related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq. The ingestion of cystatin A resulted in significant regulation of different cysteine endopeptidase and glycosylase genes. One Der p 1‐like and two cathepsin B‐like cysteine endopeptidase genes of high basal expression were induced, which suggests their prominent role in proteolytic digestion together with major allergen Der p 1. A number of genes putatively participating in the interaction of mites with their microbiota and acquired by horizontal gene transfer were repressed, including genes encoding the peptidase Der p 38, two 1,3‐beta‐glucanases, a lysozyme and a GH19 chitinase. Finally, the disruption of mite digestion resulted in the regulation of up to 17 allergen and isoallergen genes. Altogether, our results shed light on the putative role of specific genes in digestion and illustrate the connection between the digestive physiology of HDM and allergy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3