Gene cloning, protein expression, and enzymatic characterization of a double‐stranded RNA degrading enzyme in Apolygus lucorum

Author:

Zhang Jie‐Yu12ORCID,Zhao Jing2ORCID,Zhu‐Salzman Keyan3ORCID,Ji Qin‐Qin4,Jiang Yi‐Ping2,Xiao Liu‐Bin2,Xu De‐Jin2,Xu Guang‐Chun2,Ge Lin‐Quan1ORCID,Tan Yong‐An2ORCID

Affiliation:

1. College of Plant Protection Yangzhou University Yangzhou Jiangsu Province China

2. Institute of Plant Protection Jiangsu Academy of Agricultural Sciences Nanjing Jiangsu Province China

3. Department of Entomology Texas A&M University College Station TX USA

4. Taizhou Customs of the People's Republic of China Taizhou Jiangsu Province China

Abstract

AbstractRNA interference (RNAi) is a powerful tool that post‐transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double‐stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+‐binding site were similar to those of other insects’ dsRNases. The signal peptide and endonuclease non‐specific domain shared high sequence identity with the brown‐winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3