A comparison of machine learning methods for estimation of snow density using satellite images

Author:

Goodarzi Mohammad Reza12ORCID,Sabaghzadeh Maryam3,Barzkar Ali3,Niazkar Majid4,Saghafi Mostafa5ORCID

Affiliation:

1. Department of Civil Engineering, Faulty of Engineering Ferdowsi University of Mashhad Mashhad Iran

2. Department of Civil Engineering Yazd University Yazd Iran

3. Department of Civil Engineering, Water Resources Management Engineering Yazd University Yazd Iran

4. Euro‐Mediterranean Center on Climate Change|Ca' Foscari University of Venice Venice Italy

5. Department of Civil Engineering, Water and Hydraulic Structures Engineering Shahrood University Technology Shahrood Iran

Abstract

AbstractLow snow density causes snow to melt quickly, so there is no runoff during the warmer months of the year. Therefore, knowing the snow density can be useful in determining the amount of water. To predict snow density, this study used seven machine learning methods, including adaptive neural‐fuzzy inference system (ANFIS), M5P, multivariate adaptive regression spline (MARS), random forest (RF), support vector regression (SVR), gene expression programming (GEP) and eXtreme gradient boosting (XGBoost). Nine factors expected to affect snow density were considered. These factors were extracted using Google Earth Engine (GEE) from 1983 to 2022. The results showed that the surface temperature had the highest correlation (coefficient = −0.7), and the wind speed had the lowest correlation (coefficient = 0.3) among the considered factors on the snow density. Also, the best method was XGBoost (Nash–Sutcliffe efficiency [NSE] = 0.978, R = 0.957), and the worst method is SVR (NSE = 0.7, R = 0.9). Therefore, snow density can be estimated with good accuracy using a combination of machine learning methods and remote sensing.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3