An actin-like protein PoARP9 involves in the regulation of development and cellulase and amylase expression in Penicillium oxalicum

Author:

Xu Gen1,Guo Hao1,Yan Mengdi1,Jia Zhilei1,Li Zhonghai1,Chen Mei1,Bao Xiaoming1

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering Qilu University of Technology, Shandong Academy of Sciences Jinan P.R. China

Abstract

Abstract Aims In eukaryotic cells, chromatin remodelling complexes are essential for the accessibility of transcription factors to the specific regulating regions of downstream genes. Here, we identified an actin-like protein PoARP9 in cellulase production strain Penicillium oxalicum 114-2, which was an essential member of SWI/SNF complex. To investigate the physiological function of PoARP9 in transcriptional regulation, the coding gene Poarp9 was deleted in P. oxalicum 114-2. Methods and Results The absence of PoARP9 affected the colony growth on medium with glucose, cellulose or starch as sole carbon source. Meanwhile, the expression levels of major cellulase genes were all upregulated in ΔPoarp9 under the cellulase-inducing condition. In addition, the expression levels of amylase transcription activator AmyR as well as two major amylase genes were also increased in ΔPoarp9. Conclusions These results demonstrated that chromatin remodelling affects the development and expression of cellulase and amylase in P. oxalicum. And the SWI/SNF complex member PoARP9 plays essential roles in these processes. Significance and Impact of the Study This study provided new insights into the regulation of cellulase and development in P. oxalicum. And the regulatory function of SWI/SNF complex member ARP9 towards cellulase and amylase expression in P. oxalicum was verified for the first time.

Funder

Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry

Foundation of State Key Laboratory of Biobased Material and Green Papermaking

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3