Species dynamics in forage seed mixtures exposed to different lengths of growing season

Author:

Sturite Ievina1ORCID,Lunnan Tor1,Østrem Liv1

Affiliation:

1. Department of Grassland and Livestock Norwegian Institute of Bioeconomy Research (NIBIO) Ås Norway

Abstract

AbstractSix seed mixtures differing in number of species and their proportion of timothy (Phleum pratense L.) were tested during three/four production (ley) years in replicated field experiments at three climatically different sites in Norway; one a mountainous inland site at 61° N (Løken) and two in coastal environments, at 61° N (Fureneset) and 65° N (Tjøtta). There were significant differences in forage accumulation (FA) and digestible forage accumulation (DFA) between the three sites. There was a significant FA decline from the third to the fourth ley year for mixtures containing timothy, but not for mixtures without timothy. Estimated interannual FA‐ stability was higher for timothy‐based seed mixtures than for mixtures without timothy at the inland site, but FA‐stability was lower at the coastal sites. In the third‐year herbage of timothy‐based mixtures at the inland site consisted almost solely of timothy, whereas at the coastal sites meadow fescue (Festuca pratensis Huds.) and especially tall fescue (F. arundinacea Schreb.) dominated. In seed mixtures without timothy, cocksfoot (Dactylis glomerata L.) suppressed other species at the inland site, whereas at the coastal sites, tall fescue and ryegrasses (Lolium spp.) were the dominant species in the third‐year herbage. Length of growing season and site‐specific growing conditions were important drivers for the observed species changes. Timothy can thus be recommended for ley establishment at sites where the growing season is short (<4 months) and plant growth is intensive, but under conditions with a longer growing season it needs to be sown in mixtures with grass species that surpass the regrowth capacity of timothy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3