Cross‐scale assessments of the impacts and resilience of subtropical montane cloud forests to chronic seasonal droughts and episodic typhoons

Author:

Wang Hsueh‐Ching1ORCID,Huang Cho‐ying23ORCID

Affiliation:

1. Department of Earth and Life Science University of Taipei Taipei Taiwan

2. Department of Geography National Taiwan University Taipei Taiwan

3. Research Center for Future Earth National Taiwan University Taipei Taiwan

Abstract

AbstractMontane cloud forests (MCFs) are ecosystems frequently immersed in fog and are vital for the terrestrial hydrological cycle and biodiversity hotspots. However, the potential impacts of climate change, particularly intensified droughts and typhoons, on the persistence of ecosystems remain unclear. Our study conducted cross‐scale assessments using 6‐year (2016–2021) ground litterfall and 21‐year (2001–2021) satellite greenness data (the Enhanced Vegetation Index [EVI] and the EVI anomaly change [ΔEVI%]), gross primary productivity anomaly change (ΔGPP%), and meteorological variables (the standardized precipitation index [SPI] and wind speed). We found a positive correlation between summer EVI and ΔGPP% with the SPI‐3 (3‐month time scale), while winter litterfall showed a negative correlation. Maximum typhoon daily wind speed was negatively correlated with summer and the monthly ΔEVI% and ΔGPP%. These findings suggest vegetation damage and productivity loss were related to drought and typhoon intensities. Furthermore, our analysis highlighted that chronic seasonal droughts had more pronounced impacts on MCFs than severe typhoons, implying that high precipitation and frequent fog immersion do not necessarily mitigate the ramifications of water deficit on MCFs but might render MCFs more sensitive and vulnerable to drought. A significant negative correlation between the summer and winter ΔEVI% and ΔGPP% of the same year, suggesting disturbance severity during summer may facilitate vegetation regrowth and carbon accumulation in the subsequent winter. This finding may be attributed to the ecological resilience of MCFs, which enables them to recover from the previous summer. In the long‐term, our results indicated an increase in vegetation resilience over two decades in MCFs, likely driven by rising temperatures and elevated carbon dioxide levels. However, the enhancement of resilience might be overshadowed by the potential intensified droughts and typhoons in the future, potentially causing severe damage and insufficient recovery times for MCFs, thus raising concerns about uncertainties regarding their sustained resilience.

Funder

Ministry of Education

National Science and Technology Council

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3