Interpretable Machine Learning Using Partial Linear Models*

Author:

Flachaire Emmanuel1,Hué Sullivan1,Laurent Sébastien12,Hacheme Gilles1

Affiliation:

1. Aix‐Marseille University AMSE and CNRS Marseille France

2. Aix‐Marseille Graduate School of Management ‐ IAE Marseille France

Abstract

AbstractDespite their high predictive performance, random forest and gradient boosting are often considered as black boxes which has raised concerns from practitioners and regulators. As an alternative, we suggest using partial linear models that are inherently interpretable. Specifically, we propose to combine parametric and non‐parametric functions to accurately capture linearities and non‐linearities prevailing between dependent and explanatory variables, and a variable selection procedure to control for overfitting issues. Estimation relies on a two‐step procedure building upon the double residual method. We illustrate the predictive performance and interpretability of our approach on a regression problem.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3