Prediction and validation of putative candidate genes underlying drought‐tolerant QTLs through in silico and RT‐PCR approaches in rice (Oryza sativa)

Author:

Veerala Priyanka1,Chand Pooran1,Das Tapas Ranjan2ORCID,Gangwar Lokesh Kumar1

Affiliation:

1. Department of Genetics and Plant Breeding Sardar Vallabhbhai Patel University of Agriculture and Technology Meerut India

2. Division of Genetics ICAR‐Indian Agricultural Research Institute New Delhi India

Abstract

AbstractIn the present study, the aim was to predict and validate putative candidate genes underlying drought‐tolerant quantitative trait loci (QTLs) in rice crop using in silico approaches and real‐time polymerase chain reaction (RT‐PCR). The genes underlying major drought‐tolerant QTLs which have been reported by data mining, sequence variation, gene ontology analysis, quantitative traits gene finder and gene expression analysis were subjected to RiceVarmap software to design primers, and only a few variants gave the SNP/InDel primers; thus, finally, 15 primers were ultimately selected, which were used in identification of differentially expressed genes (DEGs) among contrasting rice genotypes IR 64 and N 22 for drought tolerance trait using quantitative RT‐PCR studies by providing drought stress treatment during panicle initiation stage. In this investigation, we predicted 11 genes as candidate genes underlying drought‐tolerant QTLs. Out of these, only four QTLs were found responsible for the major effect in drought tolerance regions such as QTL‐Qsn‐4b, QTL‐rn7a, QTL‐Qtgw‐2a and QTL‐phc4.1 and 11 prioritized candidates were identified that expressed in leaf tissues. Only four primers belong to two QTLs, primer vg0712623096 from QTL‐rn7a (LOC_Os07g22450) located on chromosome‐7 encoding NAC domain‐containing protein and the primers vg0431750843(LOC_Os04g53310) encoding soluble starch synthase 3‐ chloroplast precursor, vg0432626757 (LOC_Os04g54850) encoding pectin acetylesterase domain‐containing protein and vg0433031562 (LOC_Os04g55520) encoding AP2 domain‐containing protein, from QTL‐Qsn‐4b, located on chromosome‐4 found to have higher differential expression in N 22 in comparison with IR 64 during drought stress as per quantitative RT‐PCR 2–ΔΔCt values. Considering the overall study, these four primers/genes were identified as candidate genes underlying genomic regions governing drought tolerance. Therefore, these putative candidate genes could be focussed for further functional analysis to exploit in rice breeding.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3