Evaluation of a screening method by liquid chromatography-tandem mass spectrometry for estimating effect of drugs on the activation and β-oxidation of fatty acids in mitochondria

Author:

Kasuya Fumiyo1,Nishizawa Ryota1,Masuyama Teiichi1,Kazumi Maya1

Affiliation:

1. Biochemical Toxicology Laboratory, Faculty of Pharmaceutical Sciences, Kobegakuin University, Kobe, Japan

Abstract

Abstract Objectives Fatty acid metabolism is controlled not only by the acyl-coenzyme A (CoA) synthetases but by some enzymes in the β-oxidation cycle. Medium-chain and long-chain acyl-CoA esters are key metabolites in fatty acid metabolism. We have developed an enzymatic assay method for determining chain shortening of the acyl-CoAs via β-oxidation from palmitic and octanoic acids in liver mitochondria. We have evaluated the assay method for detecting whether drugs influence the activation or the β-oxidation of fatty acids. Methods Liver mitochondria were used for investigating the effect of drugs on fatty acid metabolism. The drugs selected were salicylic acid, diclofenac, valproic acid and paracetamol. Each acyl-CoA formed was analysed by liquid chromatography–tandem mass spectrometry. Key findings After less than 5 min of incubation, the levels of acyl-CoAs reflected the acyl-CoA synthetase activity, whereas after 60-min incubation they reflected the activity of some enzymes in the β-oxidation cycle. Salicylic acid, diclofenac and valproic acid inhibited the medium-chain acyl-CoA synthetases, whereas valproic acid only exhibited a weak inhibitory activity toward the β-oxidation of the medium-chain fatty acids. In the case of long-chain fatty acid metabolism, salicylic acid and diclofenac inhibited both the activation and β-oxidation, whereas valproic acid was a weak inhibitor for only the β-oxidation activity. Paracetamol showed hardly any influence on the metabolism of medium-chain and long-chain fatty acids. Conclusions These findings suggest that salicylic acid, diclofenac, valproic acid and paracetamol exert a different influence on fatty acid metabolism depending on the length of the acyl chain. This assay allows sensitive and selective analysis for predicting the pathways by which drugs exert a greater influence over fatty acid metabolism.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3