Enhancement of gene expression and melanin production of human tyrosinase gene loaded in elastic cationic niosomes

Author:

Khositsuntiwong Narinthorn1,Manosroi Aranya12,Götz Friedrich3,Werner Rolf G4,Manosroi Worapaka5,Manosroi Jiradej12

Affiliation:

1. Faculties of Pharmacy, Science and Technology Research Institute (STRI), Chiang Mai, Thailand

2. Natural Products Research and Development Center (NPRDC), Science and Technology Research Institute (STRI), Chiang Mai, Thailand

3. Department of Microbial Genetics, Faculty of Biology, University of Tübingen, Tübingen, Germany

4. Boehringer Ingelheim Company, Ingelheim am Rhein, Germany

5. Medicine, Chiang Mai University, Science and Technology Research Institute (STRI), Chiang Mai, Thailand

Abstract

Abstract Objectives Disturbance in the synthesis of tyrosinase might be one of the major causes of vitiligo. The enhancement of tyrosinase gene expression and melanin production by loading the plasmid in elastic cationic niosomes was investigated in tyrosinase gene knocked out human melanoma (M5) cells and in tyrosine-producing mouse melanoma (B16F10) cells. Methods Niosomes composed of Tween 61/cholesterol/dimethyl dioctadecyl ammonium bromide at 1 : 1 : 0.5 molar ratio were prepared by the freeze-dried empty liposomes method. The thin lipid film was redissolved in distilled water or 25% ethanol to obtain the non-elastic or elastic cationic niosomes, respectively. Key findings The maximum loading of the plasmid in non-elastic and elastic niosomes was 130 and 100 µg per 16 mg of the niosomal contents, respectively. The plasmid-loaded elastic cationic niosomes exhibited high specific tyrosinase activity of 1.66 and 1.50 fold in M5 cells and 6.81 and 4.37 fold in B16F10 cells compared with the free plasmid and the plasmid-loaded non-elastic cationic niosomes, respectively. Conclusions This study has demonstrated not only the enhancement of the expression of human tyrosinase gene by loading in elastic cationic niosomes, but also the potential application of this gene delivery system for the further development of vitiligo gene therapy.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3