Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy

Author:

Tomek Mary1,Akiyama Toru2,Dass Crispin R1

Affiliation:

1. Department of Biomedical and Health Sciences, Victoria University, St Albans, Victoria, Australia

2. Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan

Abstract

Abstract Objectives Bcl-2 is a protein that inhibits apoptosis, leading to cell survival. The Bcl-2 family has six different anti-apoptotic proteins, three pro-apoptotic proteins that are similar in structure, and other integrating proteins that function as promotors or inhibitors in the progression of apoptosis. In this discussion paper, we provide an overview of apoptosis, the role of Bcl-2 in normal cellular and molecular processes, and the role of Bcl-2 in tumour cell survival. It focuses primarily on anti-apoptotic Bcl-2, its activation in cancer, the manner in which it regulates the intrinsic and extrinsic mechanisms of apoptosis, and its broad molecular interactions with other critical proteins in the cell. Certain cancer treatments are reviewed and related directions for the future are presented. Key findings Apoptosis is common to all organisms – for eukaryotes it is a normal process of development and regeneration. The rate at which apoptosis occurs is critical to the survival of the organism, as too much can lead to the onset of degenerative diseases such as dementia, and too little may lead to cancer. FKBP-38 is a binding protein that has been discovered to be upregulated in highly aggressive cancers and binds to Bcl-2 rather than the pro-apoptotics to induce a state of hyper-mitosis. A short binding protein (Nur-77) provides new insights into Bcl-2 ‘masking’. Nurr-77 binds to Bcl-2 and exposes the BH3 domain, transforming it from a cancer promoter to an unorthodox cancer inhibitor. This presents in itself an interesting and exciting opportunity – increasing the rate of apoptosis in neoplastic cells that are usually protected by Bcl-2 activity at the mitochondria. Summary Development of drugs in the form of BH3-only and BH123 mimetic drugs provide a interesting avenue for cancer therapy for the future. Drugs that can either promote, or mimic anti-IAP activity such as Smac/Diablo would certainly be productive, thereby inducing apoptosis. Medicinal usage which can effectively suppress FKBP38 in Bcl-2-dependent cancers would provide further arsenal to combat apoptotic irregularities, particularly a treatment that is more dominant than kinetin riboside. WAVE-1 inhibitors may effectively suppress the phosphorylation of Bcl-2, thereby potentially reducing hyper-mitosis and increasing apoptosis. Recent findings shed molecular light on PDT, namely ER stress, and potential for anti-cancer therapy via either apoptosis or autophagy. A drug that can effectively upregulate Nurr-77, thereby masking the anti-apoptotic properties of Bcl-2, would indeed be life-saving for cancer patients.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3